Salt Stress Increases the Level of Translatable mRNA for Phosphoenolpyruvate Carboxylase in Mesembryanthemum crystallinum.
نویسندگان
چکیده
Mesembryanthemum crystallinum responds to salt stress by switching from C(3) photosynthesis to Crassulacean acid metabolism (CAM). During this transition the activity of phosphoenolpyruvate carboxylase (PEPCase) increases in soluble protein extracts from leaf tissue. We monitored CAM induction in plants irrigated with 0.5 molar NaCl for 5 days during the fourth, fifth, and sixth week after germination. Our results indicate that the age of the plant influenced the response to salt stress. There was no increase in PEPCase protein or PEPCase enzyme activity when plants were irrigated with 0.5 molar NaCl during the fourth and fifth week after germination. However, PEPCase activity increased within 2 to 3 days when plants were salt stressed during the sixth week after germination. Immunoblot analysis with anti-PEPCase antibodies showed that PEPCase synthesis was induced in both expanded leaves and in newly developing axillary shoot tissue. The increase in PEPCase protein was paralleled by an increase in PEPCase mRNA as assayed by immunoprecipitation of PEPCase from the in vitro translation products of RNA from salt-stressed plants. These results demonstrate that salinity increased the level of PEPCase in leaf and shoot tissue via a stress-induced increase in the steady-state level of translatable mRNA for this enzyme.
منابع مشابه
Time Course of mRNA Induction Elicited by Salt Stress in the Common Ice Plant (Mesembryanthemum crystallinum).
In the facultative halophyte Mesembryanthemum crystallinum (common ice plant), irrigation with solutions containing NaCl induces an alternate mode of carbon dioxide fixation, Crassulacean acid metabolism (CAM). The salt stress protocol which we have established facilitates the study of CAM induction and the correlation of changes in metabolism and gene expression. We have studied the time cours...
متن کاملRegulation of Phosphoenolpyruvate Carboxylase and Crassulacean Acid Metabolism Induction in Mesembryanthemum crystallinum L. by Cytokinin : Modulation of Leaf Gene Expression by Roots?
Phosphoenolpyruvate carboxylase (PEPCase), the key enzyme of Crassulacean acid metabolism, is induced by water stress in leaves of Mesembryanthemum crystallinum. In water-stressed plants or excised leaves, exogenous cytokinin suppresses PEPCase transcript accumulation in the leaves. Cytokinin (6-benzylaminopurine) used in concentrations from 5 to 500 micromolar (a) inhibits the upregulation of ...
متن کاملNucleotide sequence of the Ppc2 gene encoding a housekeeping isoform of phosphoenolpyruvate carboxylase from Mesembryanthemum crystallinum.
The gene encoding a housekeeping form of phospboenolpyruvate carboxylase (EC 4.1.1.31), was isolated from a genomic library of total DNA of Mesembryanthemum crystallinum cloned into Lambda FIX (1) using a cDNA probe specific for the CAM (Crassulacean acid metabolism) form of the enzyme (2). This gene, designated Ppc2, is present as a single copy on the Af crystallinum genome. Unlike Ppcl, the e...
متن کاملEnvironmental Control of Phosphoenolpyruvate Carboxylase Induction in Mature Mesembryanthemum crystallinum L.
Mesembryanthemum crystallinum L. plants shift the mode of carbon assimilation from C(3) to Crassulacean acid metabolism when stressed by high salinity. A prerequisite for Crassulacean acid metabolism induction is the synthesis of phosphoenolpyruvate carboxylase (PEPCase). A moderate increase in the abundance of PEPCase transcripts and activity is observed in 7-week-old, well-watered plants. Thi...
متن کاملIncreased Expression of a myo-lnositol Methyl Transferase in Mesembryanthemum crystallinum Is Part of a Stress Response Distinct from Crassulacean Acid Metabolism
The facultative halophyte Mesembryanthemum crystallinum responds to osmotic stress by switching from C3 photosynthesis to Crassulacean acid metabolism (CAM). This shift to CAM involves the stress-initiated up-regulation of mRNAs encoding CAM enzymes. The capability of the plants to induce a key CAM enzyme, phosphoenolpyruvate carboxylase, is influenced by plant age, and it has been suggested th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 84 4 شماره
صفحات -
تاریخ انتشار 1987